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Determination of the orientation distribution
function from arbitrary pole figure regions

J. A. SZPUNAR, D. C. HINZ

Department of Metallurgical Engineering, McGill University, Montreal, Canada

A full pole figure is required to calculate the series expansion coefficients of the pole figure, by
integration. The orientation distribution function (ODF) is then calculated by solving a system
of linear equations relating the coefficients of the pole figures and those of the ODF. Using a
method proposed by Bunge which does not require integration at all, but assuming a fit
between the theoretical ODF and the isolated experimental points, we calculated the ODF
from various arbitrary chosen regions of the pole figures. This technique was applied to
analyse the experimental data obtained from the measurement of three, two and one pole fig-
ures. Various tests described in this paper allow us to suggest an empirical rule indicating that
the number of experimental data points should be three times higher than the number of
required series expansion coefficients of the ODF.

1. Introduction

Pole figures for various crystallographic planes {h &/}
provide a useful representation for the experimental
texture data obtained from X-ray and neutron diffrac-
tion measurements. The X-ray methods commonly
used in industrial research laboratories require two
independent texture measurements, using the reflec-
tion and transmission techniques. Unification of the
results of these two techniques always introduces a
considerable error. Nevertheless full pole figures are
required to calculate by integration the series expan-
sion coeflicients of the pole figures. Accordingly, for
the calculation of the crystal orientation distribution
function, (ODF) one can use a system of equations
relating the coefficients of expansion of the pole figure
and the ODF coefficients [1]. It has already been
demonstrated by Morris [2] and also Jura and Pos-
piech [3], that the back reflection part of the pole figure
alone can be used to determine the ODFs coefficients
by integration over an angular interval of the pole
figure. In this case, the orthogonality relations of the
surface spherical harmonics will not hold and thus the
solution of C* results in a large system of equations
containing all pole figure coefficients. The method
therefore, offers a simpler experimental procedure at
the expense of more complex computation. Bunge [4]
has further relaxed the experimental requirements in
response to the energy dispersive X-ray and neutron
diffraction methods of ODF determination [5]. More
than three pole figures are examined using this method
allowing one to reduce the number of data points
measured on each pole figure. However for a small
number of points we would be unable to perform the
integration with a sufficient accuracy. The procedure,
therefore, suggested by Bunge does not require inte-
gration at all but requires a least squares fit between
the theoretical ODF and the isolated experimental

2846

points as described by [4]
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where P; is measured at point i (having angular co-
ordlnates a, B) of the pole figure j, N, is a normalizing
factor used to express the pole density value in units
corresponding to random density, and W, is a weight
factor.

A theoretical pole figure is expressed by the follow-
ing formula
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where C}” are the series expansion coefficients of the
ODF and k#() and k}(i, j) are the surface spherical
harmonics invariant with respect to crystal and speci-
men symmetry. Minimization of Equation 1 is carried
out with respect to variables N, and C}" and yields
previously presented relations [4].

2. Application of the method

Using the presented theoretical method, we have free-
dom in selecting the experimental points in pole figure
orientation space; however, such selection will affect
the accuracy of the obtained results.

In order to test the method we will compare the
ODF results obtained using three complete pole figures
with the ODF obtained using the partial pole figures.
This comparison will be based on three parameters:
(1) the number of data points, (2) the measured area
of the pole figure and, (3) the maximum value of the
series expansion number. The texture of Fe-Sj trans-
former steel will be analysed restricting gradually the
amount of data available for ODF calculation.

Accordingly, the ODF is calculated at first from
three full pole figures, each having 200 data points
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TABLE 1 The normalization constants N,,, calculated from pole figures

bax Number of points Nsoo N Ny
Calculated using three complete pole figures

12 3 x 100 0.725 0.855 0.848
16 3 x 100 0.849 0.933 0.922
20 3 x 100 0.953 0.998 0.974
22 3 x 100 0.988 1.017 0.990
20 3 x 200 0.898 0.848 0.848
22 3 % 200 0.956 0.956 0.956
Calculated using data obtained from the reflection technique «,,, = 40°

8 3 x 37 0.534 0.783 0.767
10 3 x 37 0.611 0.813 0.817
12 3 x 37 0.850 0.948 0.911
14 3 x 37 0.938 0.950 0.938
Calculated using data obtained from the reflection technique «,, = 350°

8 3 x 39 0.404 0.627 0.729
10 3 x 39 0.466 0.679 0.753
12 3 x39 0.680 0.866 0.873
14 3 x 39 0.712 0.902 0.911
16 3 x 39 0.947 0.994 0.964
Calculated using data obtained from the transmission technique only a(60-90)°

8 3 x40 0.451 0.697 0.657
10 3 x 40 0.607 0.736 0.778
12 3 x 40 0.835 0.862 0.910
14 3 x 40 0.865 0.891 0.954
16 3 % 40 0.956 0.952 0.987
18 3 x 40 0.962 0.971 0.995
Calculated using data obtained from the angular interval «(0-90)°, f(0-45)°

8 3 x 37 0.422 0.621 0.720
10 3 x 37 0.583 0.660 0.808
12 3 x 37 0.839 0.860 0.911
14 3 x 37 0.877 0.872 0.927

selected at equal angular intervals. Calculations are
carried out for various orders of series expansion
coefficients giving the normalization constants listed
in Table I. The {200} pole figure obtained from the
C}l¥ coeflicients having / less than 22 is presented in
Fig. 1; it compares favourably with the experimental
pole figure. Differences are observed only between
values calculated for various /.. The smaller cal-
culated N, for lower the I, is an indication that the
calculated series expansion underestimates the exist-
ing texture maxima. This fact is also illustrated by a
decrease in the amplitude of the C}" coefficients (see
Table II).

The results obtained for 3 x 200 points were also
calculated using one normalization constant. There is
only a small difference between the value of one nor-
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Figure 1 {200} pole figure calculated from the ODF (experimental
data from three pole figures were used).

malization constant and value of constants obtained
for different pole figures. This is justified, because the
experimental pole figures used in this calculation, were
already normalized and the density of poles was
expressed in multiples of random units (where the
random unit characterizes the specimen without tex-
ture). In conclusion we observe that direct fitting of
theoretical ODF to available experimental points is an
accurate and reliable method of ODF calculation.

We will now describe another test where the results
were obtained using the reflection part of the pole
figure only. Three pole figures are used in this calcu-
lation with 37 points on each pole figure. The experi-
mental data are taken from the angular interval
0° < a < 40° (where « is an angle between the crys-
tallographic plane normal and the normal to the sheet
surface). »

In another example (Table I) the maximum value of
o = 50° is used. Both these examples demonstrate
that a minimum of /,, = 14 is usually needed for
a realistic description of the ODF. For [, lower than
14, the normalization constant N is low, and there-
fore the sharpness of texture is underestimated. The
required value of /,,, depends not only on the com-
plexity of texture but also on the research problem
which is studied. Studies of the texture related aniso-
tropy of properties [1], usually require only a few
texture series expansion coefficients. These coefficients
can be, however, considerably changed if the chosen
value of /,,, is too low.

max
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Figure 2 {200} pole figure. The expansion C}” coefficients cal-
culated from transmission part (60° < « < 90°) of the three pole
figures.

Having discussed the results of calculation obtained
using reflection only we will proceed to calculations of
the ODF from transmission type data only. Normally
the results obtained using the transmission techniques
are limited to thin specimens. Transmission data are
on the peripheral part of the pole figure and this tech-
nique is used together with the reflection technique to
obtain the full pole figure. It has not been used alone
to determine the ODF. The results obtained in this
work show that the transmission technique can pro-
vide reliable series expansion coefficients of the ODF.

The normalization constants listed in Table I demon-
strate that for a low number of experimental data
(forty points on each pole figure) reliable texture coef-
fients for values of [ ,, between 12 and 18 can be
obtained. The pole figure calculated from the series
expansion coefficients of the ODF is presented in
Fig. 2.

The method of calculation of the ODF used here
can be applied to any experimental data. The data can
be, for example, chosen in a triangle of the pole figure
i.e. (0, 90) and (45, 90). The total number of the

TABLE III The coefficients of C calculated from two pole figures

Figure 3 {200} pole figure. The C!* calculated from a part of the
pole figure a(0-90)°, B(0-45)°.

experimental points is 3 x 37. Calculated normaliza-
tion factors for various /,,, are displayed in Table I and
the series expansion coefficients are listed in Table II.
Even such limited experimental data give us reliable
values for series expansion coefficients up to /,,, 12
and 14. The {200} pole figure calculated from the
coefficients of C (Fig. 3) displays the same maxima as
the figure calculated from three complete pole figures.

In the next test the number of pole figures used in
calculation will be further limited to two. The ODF
calculated from two pole figures, with 100 points each
and /.. = 14 is in good agreement with the ODF
calculated using three pole figures. Various combina-
tions of pole figures were tested (results shown in
Table III) and the best agreement with the results
obtained using three pole figures was obtained for
{110} and {112} pole figures.

As a next step in verification of this method, the
ODF was calculated only from one pole figure. Some
exemplary results of these calculations are listed in
Table IV. The values for C}” are satisfactory for low
[ value, but for / = 12 and 14 high values of the C}*
were registered indicating the instability of the solution.

L oax Pole Normalization Coefficients
figures coefficients cn e cn cn e e c
14 200 0.712 —0.147 —4.583 2.588 —4.433 1.569 2.059 2.822
110 0.834
14 200 0.746 —0.132 —4.824 2.727 —4.874 1.470 2.082 2.725
112 0.882
14 110 0.906 0.641 —5.665 3.686 —5.041 1.846 2.278 3.165
112 0.933
TABLE IV The coefficients of C calculated from one pole figure
Lnax Pole Normalization Coefficients
figures coefficients cr cr cr cn cr cn i
10 200 0.425 -0.121 —4.357 2.380 —4.050 1.206 1.633 2.400
10 110 0.743 0.095 —5.124 3.227 —4.339 1.267 1.986 2.751
10 112 0.873 —0.378 —5.401 3.223 —4.627 1.887 2.253 3.110
12 200 0.648 —0.138 —4.218 2.288 —4.097 1.180 1.587 2.374
12 110 0.907 0.478 —5.821 3.513 —5.130 1.762 2.361 3.284
12 112 0.925 0.010 —5.921 3.421 —5.333 2.144 2.295 3.178
14 200 0.673 -0.121 —4.357 2.380 —4.050 1.206 1.633 2.400
14 110 0.919 0.437 —5.730 3.562 —5.193 1.851 2.382 3.306
14 112 0.955 0.024 —6.007 3.518 —5.697 2.186 2413 3.456
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5. Conclusions

The method used in our analysis can be applied to any
experimental data registered in the pole figure or in the
inverse pole figure. The normalization constants
which are normally associated with measurements of
the different diffraction maxima are treated as vari-
ables in our calculations. The number of significant
experimental data points is a variable which deter-
mines how many expansion coefficients can be reliably
calculated. The accuracy of the calculation depends,
however, on other factors such as the type and sharp-
ness of the measured texture. From various tests per-
formed here we may suggest only an empirical rule
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which states that the number of experimental data
points should exceed three times the number of the
coefficients to be calculated.
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