
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  25  ( 1 9 9 0 )  2 8 4 6 - 2 8 5 0  

Determination of the orientation distribution 
function from arbitrary pole figure regions 

J. A. SZPUNAR,  D. C. HINZ 
Department of Metallurgical Engineering, McGill University, Montreal, Canada 

A full pole figure is required to calculate the series expansion coefficients of the pole figure, by 
integration. The orientation distribution function (ODF) is then calculated by solving a system 
of linear equations relating the coefficients of the pole figures and those of the ODF. Using a 
method proposed by Bunge which does not require integration at all, but assuming a fit 
between the theoretical ODF and the isolated experimental points, we calculated the ODF 
from various arbitrary chosen regions of the pole figures. This technique was applied to 
analyse the experimental data obtained from the measurement of three, two and one pole fig- 
ures. Various tests described in this paper allow us to suggest an empirical rule indicating that 
the number of experimental data points should be three times higher than the number of 
required series expansion coefficients of the ODF. 

1. Introduct ion 
Pole figures for various crystallographic planes {h k 1 } 
provide a useful representation for the experimental 
texture data obtained from X-ray and neutron diffrac- 
tion measurements. The X-ray methods commonly 
used in industrial research laboratories require two 
independent texture measurements, using the reflec- 
tion and transmission techniques. Unification of the 
results of these two techniques always introduces a 
considerable error. Nevertheless full pole figures are 
required to calculate by integration the series expan- 
sion coefficients of the pole figures. Accordingly, for 
the calculation of the crystal orientation distribution 
function, (ODF) one can use a system of equations 
relating the coefficients of expansion of the pole figure 
and the ODF coefficients [1]. It has already been 
demonstrated by Morris [2] and also Jura and Pos- 
piech [3], that the back reflection part of the pole figure 
alone can be used to determine the ODFs coefficients 
by integration over an angular interval of the pole 
figure. In this case, the orthogonality relations of the 
surface spherical harmonics will not hold and thus the 
solution of Cfv results in a large system of equations 
containing all pole figure coefficients. The method 
therefore, offers a simpler experimental procedure at 
the expense of more complex computation. Bunge [4] 
has further relaxed the experimental requirements in 
response to the energy dispersive X-ray and neutron 
diffraction methods of ODF determination [5]. More 
than three pole figures are examined using this method 
allowing one to reduce the number of data points 
measured on each pole figure. However for a small 
number of points we would be unable to perform the 
integration with a sufficient accuracy. The procedure, 
therefore, suggested by Bunge does not require inte- 
gration at all but requires a least squares fit between 
the theoretical ODF and the isolated experimental 

points as described by [4] 

~ [PUN: --~h]w,: = min (1) 
i j 

where Pu is measured at point i (having angular co- 
ordinates c~,/~) of the pole figure j ,  Nj is a normalizing 
factor used to express the pole density value in units 
corresponding to random density, and W u is a weight 
factor. 

A theoretical pole figure is expressed by the follow- 
ing formula 

L M(I)N(I) 4n .~ :, . ., . . 
P~ = 1 + ~, ~ ~, 2l + ~  C~ kl (J)kl(l j j)  

l = 2 p = l  v=l 

(2) 

where Cfv are the series expansion coefficients of the 
ODF and k ~ ( j )  and/~(i, j )  are the surface spherical 
harmonics invariant with respect to crystal and speci- 
men symmetry. Minimization of Equation 1 is carried 
out with respect to variables ~ and Cf" and yields 
previously presented relations [4]. 

2. App l ica t ion  of  the  method  
Using the presented theoretical method, we have free- 
dom in selecting the experimental points in pole figure 
orientation space; however, such selection will affect 
the accuracy of the obtained results. 

In order to test the method we will compare the 
ODF results obtained using three complete pole figures 
with the ODF obtained using the partial pole figures. 
This comparison will be based on three parameters: 
(1) the number of data points, (2) the measured area 
of the pole figure and, (3) the maximum value of the 
series expansion number. The texture of Fe-Si trans- 
former steel will be analysed restricting gradually the 
amount of data available for ODF calculation. 

Accordingly, the ODF is calculated at first from 
three full pole figures, each having 200 data points 
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TAB L E I The normalization constants %,k~ calculated from pole figures 

lm~x Number of points N200 Nil0 Wtl2 

Calculated using three complete pole figures 
12 3 x 100 0.725 0.855 0.848 
16 3 x 100 0.849 0.933 0.922 
20 3 x 100 0.953 0.998 0.974 
22 3 • I00 0.988 1.017 0.990 
20 3 x 200 0.898 0.848 0.848 
22 3 • 200 0.956 0.956 0.956 

Calculated using data obtained from the reflection technique C(ma x = 40 ~ 
8 3 x 37 0.534 0.783 0.767 

10 3 x 37 0.611 0.813 0.817 
12 3 • 37 0.850 0.948 0.911 
I4 3 x 37 0.938 0.950 0.938 

Calculated using data obtained from the reflection technique %a~ = 50~ 
8 3 x 39 0.404 0.627 0.729 

10 3 x 39 0.466 0.679 0.753 
12 3 x 39 0.680 0.866 0.873 
14 3 x 39 0.712 0.902 0.911 
16 3 x 39 0.947 0.994 0.964 

Calculated using data obtained from the transmission technique only ~(60-90) ~ 
8 3 x 40 0.451 0.697 0.657 

10 3 x 40 0.607 0.736 0.778 
12 3 x 40 0.835 0.862 0.910 
14 3 x 40 0.865 0.891 0.954 
16 3 x 40 0.956 0.952 0.987 
18 3 x 40 0.962 0.971 0.995 

Calculated using data obtained from the angular interval e(0-90) ~ ~ 
8 3 x 37 0.422 0.621 0.720 

10 3 x 37 0.583 0.660 0.808 
12 3 x 37 0.839 0.860 0.911 
14 3 x 37 0.877 0.872 0.927 

selected at  equal  angu la r  intervals.  Ca lcu la t ions  are  
car r ied  out  for  var ious  orders  o f  series expans ion  

coefficients giving the no rma l i za t i on  cons tan t s  l isted 
in Table  I. The  {2 0 0) pole  figure ob ta ined  f rom the 
Cp v coefficients having  l less than  22 is presented  in 
Fig. 1; it  compares  f avourab ly  with the exper imenta l  
pole  figure. Differences are observed  only between 
values ca lcula ted  for var ious  Ima• The  smal ler  cal- 
cu la ted  Nj for  lower  the /max is an ind ica t ion  tha t  the 
ca lcula ted  series expans ion  underes t imates  the exist- 

ing texture  maxima .  This  fact  is also i l lus t ra ted  by a 
decrease in the ampl i tude  o f  the Cr ~ coefficients (see 
Table  II).  

The  results ob ta ined  for  3 x 200 poin ts  were also 
ca lcula ted  us ing  one no rma l i za t i on  cons tan t .  There  is 
only  a small  difference be tween the value o f  one nor-  

RD 

Figure 1 {200} pole figure calculated from the ODF (experimental 
data from three pole figures were used). 

rea l iza t ion  cons tan t  and  value o f  cons tan t s  ob ta ined  
for different pole  figures. This  is justif ied,  because  the 
exper imenta l  pole  figures used in this ca lcula t ion ,  were 
a l ready  normal i zed  and  the densi ty  o f  poles  was 
expressed in mul t ip les  o f  r a n d o m  units  (where the 
r a n d o m  unit  character izes  the specimen wi thou t  tex- 
ture). In  conclus ion  we observe tha t  direct  f i t t ing o f  
theore t ica l  O D F  to avai lab le  exper imenta l  po in ts  is an 
accura te  and  rel iable  m e t h o d  o f  O D F  calcula t ion .  

W e  will now descr ibe ano the r  test where  the results  
were ob ta ined  using the reflection pa r t  o f  the pole  
figure only.  Three  pole  figures are  used in this calcu- 
la t ion  with 37 poin ts  on each pole  figure. The experi-  
men ta l  da t a  are  taken  f rom the angu la r  in terval  
0 ~ < ~ < 40 ~ (where ~ is an angle between the crys- 
t a l lographic  p lane  n o r m a l  and the n o r m a l  to the sheet 
surface). 

In  ano the r  example  (Table  I) the m a x i m u m  value o f  
c~ = 50 ~ is used. Both  these examples  demons t r a t e  
tha t  a m i n i m u m  of  /max = 14 is usual ly  needed  for 
a realist ic descr ip t ion  o f  the O D F .  For/max lower than  
14, the no rma l i za t ion  cons t an t  N is low, and  there- 
fore the sharpness  o f  texture  is underes t imated .  The  
requi red  value of/max, depends  no t  only  on the com-  
plexi ty  o f  texture  bu t  also on  the research p r o b l e m  
which is s tudied.  Studies  o f  the texture  re la ted  aniso-  
t ropy  o f  p roper t i e s  [1], usual ly  require  only  a few 
texture  series expans ion  coefficients. These  coefficients 
can be, however ,  cons ide rab ly  changed  if  the chosen 
value of/max is tOO lOW. 
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Figure 2 {200} pole figure. The expansion Cr ~ coefficients cal- 
culated f rom transmiss ion par t  (60 ~ < ~ < 90 ~ o f  the three pole 
figures. 

Having discussed the results of calculation obtained 
using reflection only we will proceed to calculations of 
the ODF from transmission type data only. Normally 
the results obtained using the transmission techniques 
are limited to thin specimens. Transmission data are 
on the peripheral part of the pole figure and this tech- 
nique is used together with the reflection technique to 
obtain the full pole figure. It has not been used alone 
to determine the ODF. The results obtained in this 
work show that the transmission technique can pro- 
vide reliable series expansion coefficients of the ODF. 

The normalization constants listed in Table I demon- 
strate that for a low number of experimental data 
(forty points on each pole figure) reliable texture coef- 
fients for values of /max between 12 and 18 can be 
obtained. The pole figure calculated from the series 
expansion coefficients of the ODF is presented in 
Fig. 2. 

The method of calculation of the ODF used here 
can be applied to any experimental data. The data can 
be, for example, chosen in a triangle of the pole figure 
i.e. ~(0, 90) and fl(45, 90). The total number of the 

T A B L E I I I The coefficients of  C calculated f rom two pole figures 

RD 

Figure 3 {200} pole figure. The Cfv calculated f rom a part  of  the 
pole figure c~(0-90) ~ fl(0-45) ~ 

experimental points is 3 x 37. Calculated normaliza- 
tion factors for various Im,x are displayed in Table I and 
the series expansion coefficients are listed in Table II. 
Even such limited experimental data give us reliable 
values for series expansion coefficients up to /max 12 
and 14. The {200} pole figure calculated from the 
coefficients of C (Fig. 3) displays the same maxima as 
the figure calculated from three complete pole figures. 

In the next test the number of pole figures used in 
calculation will be further limited to two. The ODF 
calculated from two pole figures, with 100 points each 
and /max ---- 14 is in good agreement with the ODF 
calculated using three pole figures. Various combina- 
tions of pole figures were tested (results shown in 
Table III) and the best agreement with the results 
obtained using three pole figures was obtained for 
{1 1 0} and {1 1 2} pole figures. 

As a next step in verification of this method, the 
ODF was calculated only from one pole figure. Some 
exemplary results of these calculations are listed in 
Table IV. The values for Cf ~ are satisfactory for low 
l value, but for l = 12 and 14 high values of the Cfv 
were registered indicating the instability of the solution. 

lma x Pole Normal iza t ion  Coefficients 
figures coefficients 

(741 ~ C~ 2 ~3 ql  q2 q3 C~4 

14 2 0 0  0.712 - 0 . 1 4 7  --4.583 
1 1 0 0.834 

14 2 0 0  0.746 - 0 . 1 3 2  - 4 . 8 2 4  
1 1 2 0.882 

14 1 1 0 0.906 0.641 - 5.665 
1 1 2 0.933 

2.588 - 4.433 1.569 2.059 2.822 

2.727 - 4.874 1.470 2.082 2.725 

3.686 - 5.041 1.846 2.278 3.165 

T A B L E  I V  The coefficients of  C calculated f rom one pole figure 

lm~ X Pole Normal iza t ion  Coefficients 
figures coefficients 

C~ ~ C~ 2 ~3 ql q2 C~3 q4 

I0 2 0 0  0.425 - 0 . 1 2 1  
10 1 1 0 0.743 0.095 
I0 1 1 2 0.873 - 0 . 3 7 8  
12 2 0 0  0.648 - 0 . 1 3 8  
12 1 1 0 0.907 0.478 
12 1 1 2 0.925 0.010 
14 2 0 0  0.673 --0.121 
14 1 1 0 0.919 0.437 
14 1 1 2 0.955 0.024 

- 4.357 2.380 - 4.050 1.206 1.633 2.400 
- 5.124 3.227 - 4.339 1.267 1.986 2.751 
- 5.401 3.223 - 4.627 1.887 2.253 3.110 
- 4 . 2 1 8  2.288 - 4 . 0 9 7  1.180 1.587 2.374 
- 5 . 8 2 1  3.513 - 5 . 1 3 0  1.762 2.361 3.284 
- 5.921 3.42l - 5.333 2.144 2.295 3.178 
- 4.357 2.380 - 4.050 1.206 1.633 2.400 
- 5 . 7 3 0  3.562 - 5 . 1 9 3  1.851 2.382 3.306 
- 6 . 0 0 7  3.518 - 5 . 6 9 7  2.186 2.413 3.456 
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5. Conc lus ions  
The method used in our analysis can be applied to any 
experimental data registered in the pole figure or in the 
inverse pole figure. The normalization constants 
which are normally associated with measurements of 
the different diffraction maxima are treated as vari- 
ables in our calculations. The number of significant 
experimental data points is a variable which deter- 
mines how many expansion coefficients can be reliably 
calculated. The accuracy of the calculation depends, 
however, on other factors such as the type and sharp- 
ness of the measured texture. From various tests per- 
formed here we may suggest only an empirical rule 

which states that the number of experimental data 
points should exceed three times the number of the 
coefficients to be calculated. 
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